Water surface tension modulates the swarming mechanics of Bacillus subtilis
نویسندگان
چکیده
Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation.
منابع مشابه
Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis.
Natural isolates of Bacillus subtilis exhibit a robust multicellular behavior known as swarming. A form of motility, swarming is characterized by a rapid, coordinated progression of a bacterial population across a surface. As a collective bacterial process, swarming is often associated with biofilm formation and has been linked to virulence factor expression in pathogenic bacteria. While the sw...
متن کاملOccurrence of Biosurfactant Producing Bacillus spp. in Diverse Habitats
Diversity among biosurfactant producing Bacillus spp. from diverse habitats was studied among 77 isolates. Cluster analysis based on phenotypic characteristics using unweighted pair-group method with arithmetic averages (UPGMAs) method was performed. Bacillus isolates possessing high surface tension activity and five reference strains were subjected to amplified 16S rDNA restriction analysis (A...
متن کاملInhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone.
AIMS (5Z)-4-Bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone(furanone) of the marine alga Delisea pulchra was synthesized, and its inhibition of swarming motility and biofilm formation of Bacillus subtilis was investigated. METHODS AND RESULTS Furanone was found to inhibit both the growth of B. subtilis and its swarming motility in a concentration-dependent way. In addition, as shown by confoc...
متن کاملContribution of surfactin and SwrA to flagellin expression, swimming, and surface motility in Bacillus subtilis.
Multicellular communities produced by Bacillus subtilis can adopt sliding or swarming to translocate over surfaces. While sliding is a flagellum-independent motility produced by the expansive forces in a growing colony, swarming requires flagellar functionality and is characterized by the appearance of hyperflagellated swarm cells that associate in bundles or rafts during movement. Previous wor...
متن کاملLaboratory strains of Bacillus subtilis do not exhibit swarming motility.
We redemonstrate that SwrA is essential for swarming motility in Bacillus subtilis, and we reassert that laboratory strains of B. subtilis do not swarm. Additionally, we find that a number of other genes, previously reported to be required for swarming in laboratory strains, are dispensable for robust swarming motility in an undomesticated strain. We attribute discrepancies in the literature to...
متن کامل